Search results for "Carbon nanotube supported catalyst"

showing 5 items of 5 documents

Solid-State Synthesis of “Bamboo-Like” and Straight Carbon Nanotubes by Thermolysis of Hexa-peri-hexabenzocoronene–Cobalt Complexes

2006

BambooHot TemperatureTime FactorsMaterials scienceSelective chemistry of single-walled nanotubeschemistry.chemical_elementCarbon nanotubelaw.inventionBiomaterialsMicroscopy Electron TransmissionlawNanotechnologyOrganic chemistryPolycyclic CompoundsGeneral Materials ScienceArgonMethylene ChlorideNanotubes CarbonCarbon nanofiberThermal decompositionTemperatureHexa-peri-hexabenzocoroneneCobaltGeneral ChemistryMicroscopy ElectronModels ChemicalchemistryChemical engineeringMicroscopy Electron ScanningCarbon nanotube supported catalystCrystallizationCobaltBiotechnologySmall
researchProduct

Highly Loaded Multi-Walled Carbon Nanotubes Non-Covalently Modified with a Bis-Imidazolium Salt and their Use as Catalyst Supports

2016

The surfaces of multi-walled carbon nanotubes (MWCNTs) were non-covalently modified using two bis-imidazolium dibromide derivatives having phenyl or pyrene groups. Due to the presence of the two pyrene groups the bis(pyren-1-ylmethylimidazolium) dibromide derivative was immobilised at a loading of about 15-16 wt %, whereas only <3 wt % of the phenyl derivative was immobilised. The presence of the two imidazolium cations helped the immobilisation of tetrachloropalladate ions after exchange with bromide ions. Tetrachloropalladate was used as pre-catalyst in several Suzuki-Miyaura carbon-carbon cross-coupling reactions in water or water/ethanol at 50 °C in only 0.1 mol % and compared with the …

Inorganic chemistrySalt (chemistry)supported catalyst02 engineering and technologyCarbon nanotube010402 general chemistryHeterogeneous catalysis01 natural sciencessupramolecular chemistryCatalysislaw.inventionnanotubeschemistry.chemical_compoundlawPhenylboronic acidsupported catalystschemistry.chemical_classificationChemistryChemistry (all)General ChemistrySettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnology0104 chemical sciencesheterogeneous catalysisCovalent bondnanotubePyreneheterogeneous catalysiCarbon nanotube supported catalystC-C coupling0210 nano-technologyNuclear chemistry
researchProduct

Function of titanium oxide coated on carbon nanotubes as support for platinum catalysts

2015

This study describes the outcome of the synthesis of laboratory-made (HM) Pt monometallic, binary and ternary catalysts supported on TiO2/CNT (carbon nanotubes) and based on using the dry-mix method of organometallic chemical vapor deposition (OMCVD). These multicomponent catalysts were investigated and compared with commercial Johnson Matthey (JM) catalysts for electrochemical applications.

Materials sciencechemistry.chemical_elementCarbon nanotubeChemical vapor depositionCondensed Matter PhysicsElectrochemistryAtomic and Molecular Physics and OpticsCatalysisTitanium oxidelaw.inventionchemistryChemical engineeringlawCarbon nanotube supported catalystPlatinumTernary operationMathematical PhysicsPhysica Scripta
researchProduct

Carbon nanotube bags: catalytic formation, physical properties, two-dimensional alignment and geometric structuring of densely filled carbon tubes.

2001

The catalytic CVD synthesis, using propyne as carbon precursor and Fe(NO3)3 as catalyst precursor inside porous alumina, gives carbon nanotube (CNT) bags in a well-arranged two-dimensional order. The tubes have the morphology of bags or fibers, since they are completely filled with smaller helicoidal CNTs. This morphology has so far not been reported for CNTs. Owing to the dense filling of the outer mother CNTs with small helicoidal CNTs, the resulting CNT fibers appear to be stiff and show no sign of inflation, as sometimes observed with hollow CNTs. The fiber morphology was observed by raster electron microscopy (REM), transmission electron microscopy (TEM), and atomic force microscopy (A…

NanotubeNanostructureChemistryOrganic ChemistryChemiechemistry.chemical_elementNanotechnologyGeneral ChemistryCarbon nanotubeCatalysislaw.inventionsymbols.namesakeField electron emissionChemical engineeringTransmission electron microscopylawsymbolsCarbon nanotube supported catalystRaman spectroscopyCarbonChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

A supercritical-fluid method for growing carbon nanotubes

2007

Large‐scale generation of multiwalled carbon nanotubes (MCNTs) is efficiently achieved through a supercritical fluid technique employing carbon dioxide as the carbon source. Nanotubes with diameters ranging from 10 to 20 nm and lengths of several tens of micrometers are synthesized (see figure). The supercritical‐fluid‐grown nanotubes also exhibit field‐emission characteristics similar to MCNTs grown by chemical‐vapor deposition.

Supercritical fluidsMaterials scienceCarbon nanofiberMechanical EngineeringCarbon nanotubesCarbon nanotubeChemical vapor depositionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSupercritical fluidlaw.inventionCarbon nanotubes multiwalledCondensed Matter::Materials ScienceNanofluidIndustrial technologyChemical engineeringMechanics of MaterialslawFrit compressionChemical vapor depositionGeneral Materials ScienceCarbon nanotube supported catalyst
researchProduct